ELEMENTARY LINEAR ALGEBRA Problem List 1

Mathematical induction, binomial formula, complex numbers

- 1. Apply mathematical induction to show that the following equations hold for all $n \in \mathbb{N}$:
 - (a) $1 + 3 + \dots + (2n 1) = n^2$,
 - (b) $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$,
 - (c) $1+3+\dots+3^{n-1}=\frac{3^n-1}{2}$.
- 2. Apply mathematical induction to shown that the following inequalities hold:
 - (a) $2^n > n^2$ for $n \ge 5$, (b) $n! > 2^n$ for $n \ge 4$, (c) $(1+x)^n \ge 1 + nx$ for $x \ge 0$ and $n \in \mathbb{N}$.
- 3. Using Newton's binomial formula, expand the following powers:

(a)
$$(x - 2y)^4$$
, (b) $(a + \sqrt{2})^5$, (c) $(c + \frac{1}{c^2})^5$

- 4. (a) Find the coefficient standing by x^5 in the expansion of $(x^3 + \frac{1}{x^2})^{15}$ (b) Find the coefficient standing by $\sqrt[4]{y}$ in the expansion of $(\sqrt[4]{y^5} - \frac{2}{y^3})^7$.
- 5. Perform the algebraic operations and write the result in the form a + ib:

(a)
$$(1+i)(2-3i)$$
, (b) $(-6+5i) + (2-4i)$, (c) $(-5+\sqrt{2}i) - (2-i)$
(d) $(1+i)(2-i)(3+2i)$, (e) $(1-2i)^3$, (f) $(1+i)^4$, (g) $(-2i)^6$,
(h) $\frac{1+2i}{2-3i}$, (i) $\frac{2-\sqrt{2}i}{2+\sqrt{3}i}$, (j) $\frac{1+3i}{3+4i} + \frac{1-4i}{3-4i}$, (k) $2-3i + \frac{1-2i}{i+2}$

6. We define the *n*-th power of the complex number z in the natural way, namely

$$z^0 = 1$$
, $z^n = z^{n-1} \cdot z$, $z^{-n} = 1/z^n$

for $n \ge 1$. Compute i^n for $n \in \mathbb{Z}$ and $(1+i)^n$ for n = 1, 2, 3, 4.

7. Using mathematical induction, show that the following formula holds:

$$1 + z + z^{2} + \ldots + z^{n} = \frac{1 - z^{n+1}}{1 - z}$$

for $z \in \mathbb{C} \setminus \{1\}$.

8. Comparing the real and imaginary parts of both sides of the equations, solve them for real x, y:

(a)
$$(1+i)x + (1-2i)y = 1-i$$
, (b) $\frac{x-3}{1+i} + \frac{y+3}{1-i} = 1+i$,
(c) $x^2 + iy^2 = 1+2i$, (d) $x^2 - iy^2 = 1+i$.

9. Writing z in the form z = x + iy, solve the following equations:

(a)
$$z^2 = i$$
, (b) $z^2 = -i$, (c) $4 + 2i = (1+i)z$,
(d) $z^2 + 4i = 0$, (e) $\frac{z+2}{i-1} = \frac{3z+i}{2+i}$, (f) $z^2 - 6z + 10 = 0$.
(g) $2z + (3-i)\overline{z} = 5 + 4i$, (h) $z + i = \overline{z+i}$, (i) $z\overline{z} + (z-\overline{z}) = 3 + 2i$,
(j) $z + \overline{z} + i(z-\overline{z}) = 5 + 3i$, (k) $i \operatorname{Re} z + i \operatorname{Im} z = 2i - 3$, (l) $\overline{z} = z^2$.

Indicate the solution on the complex plane.

10. Find all complex numbers z which satisfy the following conditions:

(a)
$$\operatorname{Re} z - 3\operatorname{Im} z = 2$$
, (b) $\operatorname{Re}(iz) \ge 1$, (c) $\operatorname{Im}(iz) \le 2$.

Indicate the solution on the complex plane.

11. Compute the modulus of each of the following complex numbers:

$$2+7i, \quad \frac{4+i}{3+2i}, \quad (1+\sqrt{2}i)^4, \quad \frac{(3-\sqrt{3}i)^2}{(\sqrt{2}+2i)^3}$$

12. Write the following numbers in the trigonometric form:

(a)
$$-3i$$
, (b) $1 + \sqrt{3}i$, (c) $2 - 2\sqrt{3}i$, (d) $\left(\frac{\sqrt{3}-i}{1+i}\right)^3$.

13. Using de Moivre's formula, compute the following powers:

(a)
$$(1+i)^{11}$$
, (b) $(2-2\sqrt{3}i)^7$, (c) $\left(\frac{1-i\sqrt{3}}{1-i}\right)^{10}$.

14. Draw on the complex plane the sets of complex numbers satisfying the following conditions:

(a)
$$|z+i| = 5$$
, (b) $|z-1| < 3$, (c) $1 \le |z+i| \le 2$, (d) $|z-i| = |z+i|$.
(e) $\operatorname{Im}(z^3) < 0$, (f) $\operatorname{Re}(z^4) \ge 0$, (g) $\operatorname{Im}(z^2) \ge \operatorname{Re}((\overline{z})^2)$.

15. Using the algebraic form of complex numbers, compute the following roots:

$$\sqrt{2-i}, \quad \sqrt{3-2i}, \quad \sqrt{1+i2\sqrt{3}}.$$

16. Using the trigonometric form of complex numbers, compute the following roots:

$$\sqrt[6]{1}, \sqrt[3]{2+i}, \sqrt[4]{-16}$$

17. Solve the equations for complex z:

(a)
$$z^{2}+z+1 = 0$$
, (b) $z^{2}+9 = 0$, (c) $z^{4}-2z^{2}+4 = 0$, (d) $z^{2}+(1+i)z-i = 0$,
(e) $z^{4} = 1$, (f) $z^{2}+3iz+4 = 0$, (g) $z^{3} = (1-i)^{3}$, (h) $(z-i)^{4} = (iz+4)^{4}$,

Romuald Lenczewski

(the problems are taken from the book of Gewert and Skoczylas, with some added by myself)