ELEMENTARY LINEAR ALGEBRA

Problem List 1

Mathematical induction, binomial formula, complex numbers

1. Apply mathematical induction to show that the following equations hold for all $n \in \mathbb{N}$:
(a) $1+3+\cdots+(2 n-1)=n^{2}$,
(b) $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}$,
(c) $1+3+\cdots+3^{n-1}=\frac{3^{n}-1}{2}$.
2. Apply mathematical induction to shown that the following inequalities hold:
(a) $2^{n}>n^{2}$ for $n \geq 5$,
(b) n ! $>2^{n}$ for $n \geq 4$,
(c) $(1+x)^{n} \geq 1+n x$ for $x \geq 0$ and $n \in \mathbb{N}$.
3. Using Newton's binomial formula, expand the following powers:
(a) $(x-2 y)^{4}$,
(b) $(a+\sqrt{2})^{5}$,
(c) $\left(c+\frac{1}{c^{2}}\right)^{5}$.
4. (a) Find the coefficient standing by x^{5} in the expansion of $\left(x^{3}+\frac{1}{x^{2}}\right)^{15}$
(b) Find the coefficient standing by $\sqrt[4]{y}$ in the expansion of $\left(\sqrt[4]{y^{5}}-\frac{2}{y^{3}}\right)^{7}$.
5. Perform the algebraic operations and write the result in the form $a+i b$:
(a) $(1+i)(2-3 i)$,
(b) $(-6+5 i)+(2-4 i)$,
(c) $(-5+\sqrt{2} i)-(2-i)$
(d) $(1+i)(2-i)(3+2 i)$,
(e) $(1-2 i)^{3}, \quad(f)(1+i)^{4}$,
(g) $(-2 i)^{6}$,
(h) $\frac{1+2 i}{2-3 i}$,
(i) $\frac{2-\sqrt{2} i}{2+\sqrt{3} i}$,
(j) $\frac{1+3 i}{3+4 i}+\frac{1-4 i}{3-4 i}$,
(k) $2-3 i+\frac{1-2 i}{i+2}$

6 . We define the n-th power of the complex number z in the natural way, namely

$$
z^{0}=1, \quad z^{n}=z^{n-1} \cdot z, \quad z^{-n}=1 / z^{n}
$$

for $n \geq 1$. Compute i^{n} for $n \in \mathbb{Z}$ and $(1+i)^{n}$ for $n=1,2,3,4$.
7. Using mathematical induction, show that the following formula holds:

$$
1+z+z^{2}+\ldots+z^{n}=\frac{1-z^{n+1}}{1-z}
$$

for $z \in \mathbb{C} \backslash\{1\}$.
8. Comparing the real and imaginary parts of both sides of the equations, solve them for real x, y :
(a) $(1+i) x+(1-2 i) y=1-i$,
(b) $\frac{x-3}{1+i}+\frac{y+3}{1-i}=1+i$,
(c) $x^{2}+i y^{2}=1+2 i$,
(d) $x^{2}-i y^{2}=1+i$.
9. Writing z in the form $z=x+i y$, solve the following equations:

$$
\begin{gathered}
(a) z^{2}=i, \quad(b) z^{2}=-i, \quad(c) 4+2 i=(1+i) z, \\
(d) z^{2}+4 i=0, \quad(e) \frac{z+2}{i-1}=\frac{3 z+i}{2+i}, \quad(f) z^{2}-6 z+10=0 . \\
(g) 2 z+(3-i) \bar{z}=5+4 i, \quad(h) z+i=\overline{z+i}, \quad(i) z \bar{z}+(z-\bar{z})=3+2 i, \\
(j) z+\bar{z}+i(z-\bar{z})=5+3 i, \quad(k) i \operatorname{Re} z+i \operatorname{Im} z=2 i-3, \quad(l) \bar{z}=z^{2} .
\end{gathered}
$$

Indicate the solution on the complex plane.
10. Find all complex numbers z which satisfy the following conditions:
(a) $\operatorname{Re} z-3 \operatorname{Im} z=2$,
(b) $\operatorname{Re}(i z) \geq 1$,
(c) $\operatorname{Im}(i z) \leq 2$.

Indicate the solution on the complex plane.
11. Compute the modulus of each of the following complex numbers:

$$
2+7 i, \quad \frac{4+i}{3+2 i}, \quad(1+\sqrt{2} i)^{4}, \quad \frac{(3-\sqrt{3} i)^{2}}{(\sqrt{2}+2 i)^{3}}
$$

12. Write the following numbers in the trigonometric form:
(a) $-3 i$,
(b) $1+\sqrt{3} i$,
(c) $2-2 \sqrt{3} i$,
(d) $\left(\frac{\sqrt{3}-i}{1+i}\right)^{3}$.
13. Using de Moivre's formula, compute the following powers:
(a) $(1+i)^{11}$,
(b) $(2-2 \sqrt{3} i)^{7}$,
(c) $\left(\frac{1-i \sqrt{3}}{1-i}\right)^{10}$.
14. Draw on the complex plane the sets of complex numbers satisfying the following conditions:
(a) $|z+i|=5$,
(b) $|z-1|<3$,
(c) $1 \leq|z+i| \leq 2$,
(d) $|z-i|=|z+i|$.
(e) $\operatorname{Im}\left(z^{3}\right)<0$,
(f) $\operatorname{Re}\left(z^{4}\right) \geq 0$,
$(g) \operatorname{Im}\left(z^{2}\right) \geq \operatorname{Re}\left((\bar{z})^{2}\right)$.
15. Using the algebraic form of complex numbers, compute the following roots:

$$
\sqrt{2-i}, \quad \sqrt{3-2 i}, \quad \sqrt{1+i 2 \sqrt{3}}
$$

16. Using the trigonometric form of complex numbers, compute the following roots:

$$
\sqrt[6]{1}, \quad \sqrt[3]{2+i}, \quad \sqrt[4]{-16}
$$

17. Solve the equations for complex z :
(a) $z^{2}+z+1=0$,
(b) $z^{2}+9=0$,
(c) $z^{4}-2 z^{2}+4=0$,
(d) $z^{2}+(1+i) z-i=0$,
(e) $z^{4}=1, \quad(f) z^{2}+3 i z+4=0$,
$(g) z^{3}=(1-i)^{3}$,
(h) $(z-i)^{4}=(i z+4)^{4}$,

Romuald Lenczewski
(the problems are taken from the book of Gewert and Skoczylas, with some added by myself)

